pub struct Decimal { /* private fields */ }
Expand description
Decimal
represents a 128 bit representation of a fixed-precision decimal number.
The finite set of values of type Decimal
are of the form m / 10e,
where m is an integer such that -296 < m < 296, and e is an integer
between 0 and 28 inclusive.
Implementations§
§impl Decimal
impl Decimal
pub const MIN: Decimal = MIN
pub const MIN: Decimal = MIN
The smallest value that can be represented by this decimal type.
§Examples
Basic usage:
assert_eq!(Decimal::MIN, dec!(-79_228_162_514_264_337_593_543_950_335));
pub const MAX: Decimal = MAX
pub const MAX: Decimal = MAX
The largest value that can be represented by this decimal type.
§Examples
Basic usage:
assert_eq!(Decimal::MAX, dec!(79_228_162_514_264_337_593_543_950_335));
pub const NEGATIVE_ONE: Decimal = NEGATIVE_ONE
pub const NEGATIVE_ONE: Decimal = NEGATIVE_ONE
pub const ONE_HUNDRED: Decimal = ONE_HUNDRED
pub const ONE_HUNDRED: Decimal = ONE_HUNDRED
pub const ONE_THOUSAND: Decimal = ONE_THOUSAND
pub const ONE_THOUSAND: Decimal = ONE_THOUSAND
pub const PI: Decimal = _
pub const PI: Decimal = _
A constant representing π as 3.1415926535897932384626433833
§Examples
Basic usage:
assert_eq!(Decimal::PI, dec!(3.1415926535897932384626433833));
pub const HALF_PI: Decimal = _
pub const HALF_PI: Decimal = _
A constant representing π/2 as 1.5707963267948966192313216916
§Examples
Basic usage:
assert_eq!(Decimal::HALF_PI, dec!(1.5707963267948966192313216916));
pub const QUARTER_PI: Decimal = _
pub const QUARTER_PI: Decimal = _
A constant representing π/4 as 0.7853981633974483096156608458
§Examples
Basic usage:
assert_eq!(Decimal::QUARTER_PI, dec!(0.7853981633974483096156608458));
pub const TWO_PI: Decimal = _
pub const TWO_PI: Decimal = _
A constant representing 2π as 6.2831853071795864769252867666
§Examples
Basic usage:
assert_eq!(Decimal::TWO_PI, dec!(6.2831853071795864769252867666));
pub const E: Decimal = _
pub const E: Decimal = _
A constant representing Euler’s number (e) as 2.7182818284590452353602874714
§Examples
Basic usage:
assert_eq!(Decimal::E, dec!(2.7182818284590452353602874714));
pub const E_INVERSE: Decimal = _
pub const E_INVERSE: Decimal = _
A constant representing the inverse of Euler’s number (1/e) as 0.3678794411714423215955237702
§Examples
Basic usage:
assert_eq!(Decimal::E_INVERSE, dec!(0.3678794411714423215955237702));
pub fn new(num: i64, scale: u32) -> Decimal
pub fn new(num: i64, scale: u32) -> Decimal
Returns a Decimal
with a 64 bit m
representation and corresponding e
scale.
§Arguments
num
- An i64 that represents them
portion of the decimal numberscale
- A u32 representing thee
portion of the decimal number.
§Panics
This function panics if scale
is > 28.
§Example
let pi = Decimal::new(3141, 3);
assert_eq!(pi.to_string(), "3.141");
pub const fn try_new(num: i64, scale: u32) -> Result<Decimal, Error>
pub const fn try_new(num: i64, scale: u32) -> Result<Decimal, Error>
Checked version of Decimal::new
. Will return Err
instead of panicking at run-time.
§Example
let max = Decimal::try_new(i64::MAX, u32::MAX);
assert!(max.is_err());
pub fn from_i128_with_scale(num: i128, scale: u32) -> Decimal
pub fn from_i128_with_scale(num: i128, scale: u32) -> Decimal
Creates a Decimal
using a 128 bit signed m
representation and corresponding e
scale.
§Arguments
num
- An i128 that represents them
portion of the decimal numberscale
- A u32 representing thee
portion of the decimal number.
§Panics
This function panics if scale
is > 28 or if num
exceeds the maximum supported 96 bits.
§Example
let pi = Decimal::from_i128_with_scale(3141i128, 3);
assert_eq!(pi.to_string(), "3.141");
pub const fn try_from_i128_with_scale(
num: i128,
scale: u32,
) -> Result<Decimal, Error>
pub const fn try_from_i128_with_scale( num: i128, scale: u32, ) -> Result<Decimal, Error>
Checked version of Decimal::from_i128_with_scale
. Will return Err
instead
of panicking at run-time.
§Example
let max = Decimal::try_from_i128_with_scale(i128::MAX, u32::MAX);
assert!(max.is_err());
pub const fn from_parts(
lo: u32,
mid: u32,
hi: u32,
negative: bool,
scale: u32,
) -> Decimal
pub const fn from_parts( lo: u32, mid: u32, hi: u32, negative: bool, scale: u32, ) -> Decimal
Returns a Decimal
using the instances constituent parts.
§Arguments
lo
- The low 32 bits of a 96-bit integer.mid
- The middle 32 bits of a 96-bit integer.hi
- The high 32 bits of a 96-bit integer.negative
-true
to indicate a negative number.scale
- A power of 10 ranging from 0 to 28.
§Caution: Undefined behavior
While a scale greater than 28 can be passed in, it will be automatically capped by this function at the maximum precision. The library opts towards this functionality as opposed to a panic to ensure that the function can be treated as constant. This may lead to undefined behavior in downstream applications and should be treated with caution.
§Example
let pi = Decimal::from_parts(1102470952, 185874565, 1703060790, false, 28);
assert_eq!(pi.to_string(), "3.1415926535897932384626433832");
pub fn from_scientific(value: &str) -> Result<Decimal, Error>
pub fn from_scientific(value: &str) -> Result<Decimal, Error>
pub fn from_str_radix(str: &str, radix: u32) -> Result<Decimal, Error>
pub fn from_str_radix(str: &str, radix: u32) -> Result<Decimal, Error>
Converts a string slice in a given base to a decimal.
The string is expected to be an optional + sign followed by digits. Digits are a subset of these characters, depending on radix, and will return an error if outside the expected range:
- 0-9
- a-z
- A-Z
§Examples
Basic usage:
assert_eq!(Decimal::from_str_radix("A", 16)?.to_string(), "10");
pub fn from_str_exact(str: &str) -> Result<Decimal, Error>
pub fn from_str_exact(str: &str) -> Result<Decimal, Error>
Parses a string slice into a decimal. If the value underflows and cannot be represented with the given scale then this will return an error.
§Examples
Basic usage:
assert_eq!(Decimal::from_str_exact("0.001")?.to_string(), "0.001");
assert_eq!(Decimal::from_str_exact("0.00000_00000_00000_00000_00000_001")?.to_string(), "0.0000000000000000000000000001");
assert_eq!(Decimal::from_str_exact("0.00000_00000_00000_00000_00000_0001"), Err(Error::Underflow));
pub const fn scale(&self) -> u32
pub const fn scale(&self) -> u32
Returns the scale of the decimal number, otherwise known as e
.
§Example
let num = Decimal::new(1234, 3);
assert_eq!(num.scale(), 3u32);
pub const fn mantissa(&self) -> i128
pub const fn mantissa(&self) -> i128
Returns the mantissa of the decimal number.
§Example
use rust_decimal_macros::dec;
let num = dec!(-1.2345678);
assert_eq!(num.mantissa(), -12345678i128);
assert_eq!(num.scale(), 7);
pub const fn is_zero(&self) -> bool
pub const fn is_zero(&self) -> bool
Returns true if this Decimal number is equivalent to zero.
§Example
let num = Decimal::ZERO;
assert!(num.is_zero());
pub fn is_integer(&self) -> bool
pub fn is_integer(&self) -> bool
Returns true if this Decimal number has zero fractional part (is equal to an integer)
§Example
assert_eq!(dec!(5).is_integer(), true);
// Trailing zeros are also ignored
assert_eq!(dec!(5.0000).is_integer(), true);
// If there is a fractional part then it is not an integer
assert_eq!(dec!(5.1).is_integer(), false);
pub fn set_sign(&mut self, positive: bool)
👎Deprecated since 1.4.0: please use set_sign_positive
instead
pub fn set_sign(&mut self, positive: bool)
set_sign_positive
insteadpub fn set_sign_positive(&mut self, positive: bool)
pub fn set_sign_positive(&mut self, positive: bool)
pub fn set_sign_negative(&mut self, negative: bool)
pub fn set_sign_negative(&mut self, negative: bool)
pub fn rescale(&mut self, scale: u32)
pub fn rescale(&mut self, scale: u32)
Modifies the Decimal
towards the desired scale, attempting to do so without changing the
underlying number itself.
Setting the scale to something less then the current Decimal
s scale will
cause the newly created Decimal
to perform rounding using the MidpointAwayFromZero
strategy.
Scales greater than the maximum precision that can be represented by Decimal
will be
automatically rounded to either Decimal::MAX_PRECISION
or the maximum precision that can
be represented with the given mantissa.
§Arguments
scale
: The desired scale to use for the newDecimal
number.
§Example
use rust_decimal_macros::dec;
// Rescaling to a higher scale preserves the value
let mut number = dec!(1.123);
assert_eq!(number.scale(), 3);
number.rescale(6);
assert_eq!(number.to_string(), "1.123000");
assert_eq!(number.scale(), 6);
// Rescaling to a lower scale forces the number to be rounded
let mut number = dec!(1.45);
assert_eq!(number.scale(), 2);
number.rescale(1);
assert_eq!(number.to_string(), "1.5");
assert_eq!(number.scale(), 1);
// This function never fails. Consequently, if a scale is provided that is unable to be
// represented using the given mantissa, then the maximum possible scale is used.
let mut number = dec!(11.76470588235294);
assert_eq!(number.scale(), 14);
number.rescale(28);
// A scale of 28 cannot be represented given this mantissa, however it was able to represent
// a number with a scale of 27
assert_eq!(number.to_string(), "11.764705882352940000000000000");
assert_eq!(number.scale(), 27);
pub const fn serialize(&self) -> [u8; 16]
pub const fn serialize(&self) -> [u8; 16]
Returns a serialized version of the decimal number. The resulting byte array will have the following representation:
- Bytes 1-4: flags
- Bytes 5-8: lo portion of
m
- Bytes 9-12: mid portion of
m
- Bytes 13-16: high portion of
m
pub fn deserialize(bytes: [u8; 16]) -> Decimal
pub fn deserialize(bytes: [u8; 16]) -> Decimal
Deserializes the given bytes into a decimal number. The deserialized byte representation must be 16 bytes and adhere to the following convention:
- Bytes 1-4: flags
- Bytes 5-8: lo portion of
m
- Bytes 9-12: mid portion of
m
- Bytes 13-16: high portion of
m
pub fn is_negative(&self) -> bool
👎Deprecated since 0.6.3: please use is_sign_negative
instead
pub fn is_negative(&self) -> bool
is_sign_negative
insteadReturns true
if the decimal is negative.
pub fn is_positive(&self) -> bool
👎Deprecated since 0.6.3: please use is_sign_positive
instead
pub fn is_positive(&self) -> bool
is_sign_positive
insteadReturns true
if the decimal is positive.
pub const fn is_sign_negative(&self) -> bool
pub const fn is_sign_negative(&self) -> bool
Returns true
if the sign bit of the decimal is negative.
§Example
assert_eq!(true, Decimal::new(-1, 0).is_sign_negative());
assert_eq!(false, Decimal::new(1, 0).is_sign_negative());
pub const fn is_sign_positive(&self) -> bool
pub const fn is_sign_positive(&self) -> bool
Returns true
if the sign bit of the decimal is positive.
§Example
assert_eq!(false, Decimal::new(-1, 0).is_sign_positive());
assert_eq!(true, Decimal::new(1, 0).is_sign_positive());
pub const fn min_value() -> Decimal
👎Deprecated since 1.12.0: Use the associated constant Decimal::MIN
pub const fn min_value() -> Decimal
Returns the minimum possible number that Decimal
can represent.
pub const fn max_value() -> Decimal
👎Deprecated since 1.12.0: Use the associated constant Decimal::MAX
pub const fn max_value() -> Decimal
Returns the maximum possible number that Decimal
can represent.
pub fn trunc(&self) -> Decimal
pub fn trunc(&self) -> Decimal
Returns a new Decimal
integral with no fractional portion.
This is a true truncation whereby no rounding is performed.
§Example
let pi = dec!(3.141);
assert_eq!(pi.trunc(), dec!(3));
// Negative numbers are similarly truncated without rounding
let neg = dec!(-1.98765);
assert_eq!(neg.trunc(), Decimal::NEGATIVE_ONE);
pub fn trunc_with_scale(&self, scale: u32) -> Decimal
pub fn trunc_with_scale(&self, scale: u32) -> Decimal
Returns a new Decimal
with the fractional portion delimited by scale
.
This is a true truncation whereby no rounding is performed.
§Example
let pi = dec!(3.141592);
assert_eq!(pi.trunc_with_scale(2), dec!(3.14));
// Negative numbers are similarly truncated without rounding
let neg = dec!(-1.98765);
assert_eq!(neg.trunc_with_scale(1), dec!(-1.9));
pub fn fract(&self) -> Decimal
pub fn fract(&self) -> Decimal
Returns a new Decimal
representing the fractional portion of the number.
§Example
let pi = Decimal::new(3141, 3);
let fract = Decimal::new(141, 3);
// note that it returns a decimal
assert_eq!(pi.fract(), fract);
pub fn abs(&self) -> Decimal
pub fn abs(&self) -> Decimal
Computes the absolute value of self
.
§Example
let num = Decimal::new(-3141, 3);
assert_eq!(num.abs().to_string(), "3.141");
pub fn floor(&self) -> Decimal
pub fn floor(&self) -> Decimal
Returns the largest integer less than or equal to a number.
§Example
let num = Decimal::new(3641, 3);
assert_eq!(num.floor().to_string(), "3");
pub fn ceil(&self) -> Decimal
pub fn ceil(&self) -> Decimal
Returns the smallest integer greater than or equal to a number.
§Example
let num = Decimal::new(3141, 3);
assert_eq!(num.ceil().to_string(), "4");
let num = Decimal::new(3, 0);
assert_eq!(num.ceil().to_string(), "3");
pub fn max(self, other: Decimal) -> Decimal
pub fn max(self, other: Decimal) -> Decimal
Returns the maximum of the two numbers.
let x = Decimal::new(1, 0);
let y = Decimal::new(2, 0);
assert_eq!(y, x.max(y));
pub fn min(self, other: Decimal) -> Decimal
pub fn min(self, other: Decimal) -> Decimal
Returns the minimum of the two numbers.
let x = Decimal::new(1, 0);
let y = Decimal::new(2, 0);
assert_eq!(x, x.min(y));
pub fn normalize(&self) -> Decimal
pub fn normalize(&self) -> Decimal
Strips any trailing zero’s from a Decimal
and converts -0 to 0.
§Example
let number = Decimal::from_str("3.100")?;
assert_eq!(number.normalize().to_string(), "3.1");
pub fn normalize_assign(&mut self)
pub fn normalize_assign(&mut self)
An in place version of normalize
. Strips any trailing zero’s from a Decimal
and converts -0 to 0.
§Example
let mut number = Decimal::from_str("3.100")?;
assert_eq!(number.to_string(), "3.100");
number.normalize_assign();
assert_eq!(number.to_string(), "3.1");
pub fn round(&self) -> Decimal
pub fn round(&self) -> Decimal
Returns a new Decimal
number with no fractional portion (i.e. an integer).
Rounding currently follows “Bankers Rounding” rules. e.g. 6.5 -> 6, 7.5 -> 8
§Example
// Demonstrating bankers rounding...
let number_down = Decimal::new(65, 1);
let number_up = Decimal::new(75, 1);
assert_eq!(number_down.round().to_string(), "6");
assert_eq!(number_up.round().to_string(), "8");
pub fn round_dp_with_strategy(
&self,
dp: u32,
strategy: RoundingStrategy,
) -> Decimal
pub fn round_dp_with_strategy( &self, dp: u32, strategy: RoundingStrategy, ) -> Decimal
Returns a new Decimal
number with the specified number of decimal points for fractional
portion.
Rounding is performed using the provided [RoundingStrategy
]
§Arguments
dp
: the number of decimal points to round to.strategy
: the [RoundingStrategy
] to use.
§Example
let tax = dec!(3.4395);
assert_eq!(tax.round_dp_with_strategy(2, RoundingStrategy::MidpointAwayFromZero).to_string(), "3.44");
pub fn round_dp(&self, dp: u32) -> Decimal
pub fn round_dp(&self, dp: u32) -> Decimal
Returns a new Decimal
number with the specified number of decimal points for fractional portion.
Rounding currently follows “Bankers Rounding” rules. e.g. 6.5 -> 6, 7.5 -> 8
§Arguments
dp
: the number of decimal points to round to.
§Example
let pi = dec!(3.1415926535897932384626433832);
assert_eq!(pi.round_dp(2).to_string(), "3.14");
pub fn round_sf(&self, digits: u32) -> Option<Decimal>
pub fn round_sf(&self, digits: u32) -> Option<Decimal>
Returns Some(Decimal)
number rounded to the specified number of significant digits. If
the resulting number is unable to be represented by the Decimal
number then None
will
be returned.
When the number of significant figures of the Decimal
being rounded is greater than the requested
number of significant digits then rounding will be performed using MidpointNearestEven
strategy.
§Arguments
digits
: the number of significant digits to round to.
§Remarks
A significant figure is determined using the following rules:
- Non-zero digits are always significant.
- Zeros between non-zero digits are always significant.
- Leading zeros are never significant.
- Trailing zeros are only significant if the number contains a decimal point.
§Example
use rust_decimal_macros::dec;
let value = dec!(305.459);
assert_eq!(value.round_sf(0), Some(dec!(0)));
assert_eq!(value.round_sf(1), Some(dec!(300)));
assert_eq!(value.round_sf(2), Some(dec!(310)));
assert_eq!(value.round_sf(3), Some(dec!(305)));
assert_eq!(value.round_sf(4), Some(dec!(305.5)));
assert_eq!(value.round_sf(5), Some(dec!(305.46)));
assert_eq!(value.round_sf(6), Some(dec!(305.459)));
assert_eq!(value.round_sf(7), Some(dec!(305.4590)));
assert_eq!(Decimal::MAX.round_sf(1), None);
let value = dec!(0.012301);
assert_eq!(value.round_sf(3), Some(dec!(0.0123)));
pub fn round_sf_with_strategy(
&self,
digits: u32,
strategy: RoundingStrategy,
) -> Option<Decimal>
pub fn round_sf_with_strategy( &self, digits: u32, strategy: RoundingStrategy, ) -> Option<Decimal>
Returns Some(Decimal)
number rounded to the specified number of significant digits. If
the resulting number is unable to be represented by the Decimal
number then None
will
be returned.
When the number of significant figures of the Decimal
being rounded is greater than the requested
number of significant digits then rounding will be performed using the provided [RoundingStrategy].
§Arguments
digits
: the number of significant digits to round to.strategy
: if required, the rounding strategy to use.
§Remarks
A significant figure is determined using the following rules:
- Non-zero digits are always significant.
- Zeros between non-zero digits are always significant.
- Leading zeros are never significant.
- Trailing zeros are only significant if the number contains a decimal point.
§Example
use rust_decimal_macros::dec;
let value = dec!(305.459);
assert_eq!(value.round_sf_with_strategy(0, RoundingStrategy::ToZero), Some(dec!(0)));
assert_eq!(value.round_sf_with_strategy(1, RoundingStrategy::ToZero), Some(dec!(300)));
assert_eq!(value.round_sf_with_strategy(2, RoundingStrategy::ToZero), Some(dec!(300)));
assert_eq!(value.round_sf_with_strategy(3, RoundingStrategy::ToZero), Some(dec!(305)));
assert_eq!(value.round_sf_with_strategy(4, RoundingStrategy::ToZero), Some(dec!(305.4)));
assert_eq!(value.round_sf_with_strategy(5, RoundingStrategy::ToZero), Some(dec!(305.45)));
assert_eq!(value.round_sf_with_strategy(6, RoundingStrategy::ToZero), Some(dec!(305.459)));
assert_eq!(value.round_sf_with_strategy(7, RoundingStrategy::ToZero), Some(dec!(305.4590)));
assert_eq!(Decimal::MAX.round_sf_with_strategy(1, RoundingStrategy::ToZero), Some(dec!(70000000000000000000000000000)));
let value = dec!(0.012301);
assert_eq!(value.round_sf_with_strategy(3, RoundingStrategy::AwayFromZero), Some(dec!(0.0124)));
pub const fn unpack(&self) -> UnpackedDecimal
pub const fn unpack(&self) -> UnpackedDecimal
Convert Decimal
to an internal representation of the underlying struct. This is useful
for debugging the internal state of the object.
§Important Disclaimer
This is primarily intended for library maintainers. The internal representation of a
Decimal
is considered “unstable” for public use.
§Example
use rust_decimal_macros::dec;
let pi = dec!(3.1415926535897932384626433832);
assert_eq!(format!("{:?}", pi), "3.1415926535897932384626433832");
assert_eq!(format!("{:?}", pi.unpack()), "UnpackedDecimal { \
negative: false, scale: 28, hi: 1703060790, mid: 185874565, lo: 1102470952 \
}");
pub fn from_f32_retain(n: f32) -> Option<Decimal>
pub fn from_f32_retain(n: f32) -> Option<Decimal>
Parses a 32-bit float into a Decimal number whilst retaining any non-guaranteed precision.
Typically when a float is parsed in Rust Decimal, any excess bits (after ~7.22 decimal points for f32 as per IEEE-754) are removed due to any digits following this are considered an approximation at best. This function bypasses this additional step and retains these excess bits.
§Example
// Usually floats are parsed leveraging float guarantees. i.e. 0.1_f32 => 0.1
assert_eq!("0.1", Decimal::from_f32(0.1_f32).unwrap().to_string());
// Sometimes, we may want to represent the approximation exactly.
assert_eq!("0.100000001490116119384765625", Decimal::from_f32_retain(0.1_f32).unwrap().to_string());
pub fn from_f64_retain(n: f64) -> Option<Decimal>
pub fn from_f64_retain(n: f64) -> Option<Decimal>
Parses a 64-bit float into a Decimal number whilst retaining any non-guaranteed precision.
Typically when a float is parsed in Rust Decimal, any excess bits (after ~15.95 decimal points for f64 as per IEEE-754) are removed due to any digits following this are considered an approximation at best. This function bypasses this additional step and retains these excess bits.
§Example
// Usually floats are parsed leveraging float guarantees. i.e. 0.1_f64 => 0.1
assert_eq!("0.1", Decimal::from_f64(0.1_f64).unwrap().to_string());
// Sometimes, we may want to represent the approximation exactly.
assert_eq!("0.1000000000000000055511151231", Decimal::from_f64_retain(0.1_f64).unwrap().to_string());
§impl Decimal
impl Decimal
pub fn checked_add(self, other: Decimal) -> Option<Decimal>
pub fn checked_add(self, other: Decimal) -> Option<Decimal>
Checked addition. Computes self + other
, returning None
if overflow occurred.
pub fn saturating_add(self, other: Decimal) -> Decimal
pub fn saturating_add(self, other: Decimal) -> Decimal
Saturating addition. Computes self + other
, saturating at the relevant upper or lower boundary.
pub fn checked_mul(self, other: Decimal) -> Option<Decimal>
pub fn checked_mul(self, other: Decimal) -> Option<Decimal>
Checked multiplication. Computes self * other
, returning None
if overflow occurred.
pub fn saturating_mul(self, other: Decimal) -> Decimal
pub fn saturating_mul(self, other: Decimal) -> Decimal
Saturating multiplication. Computes self * other
, saturating at the relevant upper or lower boundary.
pub fn checked_sub(self, other: Decimal) -> Option<Decimal>
pub fn checked_sub(self, other: Decimal) -> Option<Decimal>
Checked subtraction. Computes self - other
, returning None
if overflow occurred.
pub fn saturating_sub(self, other: Decimal) -> Decimal
pub fn saturating_sub(self, other: Decimal) -> Decimal
Saturating subtraction. Computes self - other
, saturating at the relevant upper or lower boundary.
pub fn checked_div(self, other: Decimal) -> Option<Decimal>
pub fn checked_div(self, other: Decimal) -> Option<Decimal>
Checked division. Computes self / other
, returning None
if overflow occurred.
pub fn checked_rem(self, other: Decimal) -> Option<Decimal>
pub fn checked_rem(self, other: Decimal) -> Option<Decimal>
Checked remainder. Computes self % other
, returning None
if overflow occurred.
Trait Implementations§
§impl<'a> AddAssign<&'a Decimal> for &'a mut Decimal
impl<'a> AddAssign<&'a Decimal> for &'a mut Decimal
§fn add_assign(&mut self, other: &'a Decimal)
fn add_assign(&mut self, other: &'a Decimal)
+=
operation. Read more§impl<'a> AddAssign<&'a Decimal> for Decimal
impl<'a> AddAssign<&'a Decimal> for Decimal
§fn add_assign(&mut self, other: &'a Decimal)
fn add_assign(&mut self, other: &'a Decimal)
+=
operation. Read more§impl<'a> AddAssign<Decimal> for &'a mut Decimal
impl<'a> AddAssign<Decimal> for &'a mut Decimal
§fn add_assign(&mut self, other: Decimal)
fn add_assign(&mut self, other: Decimal)
+=
operation. Read more§impl AddAssign for Decimal
impl AddAssign for Decimal
§fn add_assign(&mut self, other: Decimal)
fn add_assign(&mut self, other: Decimal)
+=
operation. Read more§impl CheckedAdd for Decimal
impl CheckedAdd for Decimal
§fn checked_add(&self, v: &Decimal) -> Option<Decimal>
fn checked_add(&self, v: &Decimal) -> Option<Decimal>
None
is
returned.§impl CheckedDiv for Decimal
impl CheckedDiv for Decimal
§fn checked_div(&self, v: &Decimal) -> Option<Decimal>
fn checked_div(&self, v: &Decimal) -> Option<Decimal>
None
is returned.§impl CheckedMul for Decimal
impl CheckedMul for Decimal
§fn checked_mul(&self, v: &Decimal) -> Option<Decimal>
fn checked_mul(&self, v: &Decimal) -> Option<Decimal>
None
is returned.§impl CheckedRem for Decimal
impl CheckedRem for Decimal
§impl CheckedSub for Decimal
impl CheckedSub for Decimal
§fn checked_sub(&self, v: &Decimal) -> Option<Decimal>
fn checked_sub(&self, v: &Decimal) -> Option<Decimal>
None
is returned.§impl<'de> Deserialize<'de> for Decimal
impl<'de> Deserialize<'de> for Decimal
§fn deserialize<D>(
deserializer: D,
) -> Result<Decimal, <D as Deserializer<'de>>::Error>where
D: Deserializer<'de>,
fn deserialize<D>(
deserializer: D,
) -> Result<Decimal, <D as Deserializer<'de>>::Error>where
D: Deserializer<'de>,
§impl<'a> DivAssign<&'a Decimal> for &'a mut Decimal
impl<'a> DivAssign<&'a Decimal> for &'a mut Decimal
§fn div_assign(&mut self, other: &'a Decimal)
fn div_assign(&mut self, other: &'a Decimal)
/=
operation. Read more§impl<'a> DivAssign<&'a Decimal> for Decimal
impl<'a> DivAssign<&'a Decimal> for Decimal
§fn div_assign(&mut self, other: &'a Decimal)
fn div_assign(&mut self, other: &'a Decimal)
/=
operation. Read more§impl<'a> DivAssign<Decimal> for &'a mut Decimal
impl<'a> DivAssign<Decimal> for &'a mut Decimal
§fn div_assign(&mut self, other: Decimal)
fn div_assign(&mut self, other: Decimal)
/=
operation. Read more§impl DivAssign for Decimal
impl DivAssign for Decimal
§fn div_assign(&mut self, other: Decimal)
fn div_assign(&mut self, other: Decimal)
/=
operation. Read more§impl FromPrimitive for Decimal
impl FromPrimitive for Decimal
§fn from_i32(n: i32) -> Option<Decimal>
fn from_i32(n: i32) -> Option<Decimal>
i32
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned.§fn from_i64(n: i64) -> Option<Decimal>
fn from_i64(n: i64) -> Option<Decimal>
i64
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned.§fn from_i128(n: i128) -> Option<Decimal>
fn from_i128(n: i128) -> Option<Decimal>
i128
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned. Read more§fn from_u32(n: u32) -> Option<Decimal>
fn from_u32(n: u32) -> Option<Decimal>
u32
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned.§fn from_u64(n: u64) -> Option<Decimal>
fn from_u64(n: u64) -> Option<Decimal>
u64
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned.§fn from_u128(n: u128) -> Option<Decimal>
fn from_u128(n: u128) -> Option<Decimal>
u128
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned. Read more§fn from_f32(n: f32) -> Option<Decimal>
fn from_f32(n: f32) -> Option<Decimal>
f32
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned.§fn from_f64(n: f64) -> Option<Decimal>
fn from_f64(n: f64) -> Option<Decimal>
f64
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned. Read moresource§fn from_isize(n: isize) -> Option<Self>
fn from_isize(n: isize) -> Option<Self>
isize
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned.source§fn from_i8(n: i8) -> Option<Self>
fn from_i8(n: i8) -> Option<Self>
i8
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned.source§fn from_i16(n: i16) -> Option<Self>
fn from_i16(n: i16) -> Option<Self>
i16
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned.source§fn from_usize(n: usize) -> Option<Self>
fn from_usize(n: usize) -> Option<Self>
usize
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned.§impl MathematicalOps for Decimal
impl MathematicalOps for Decimal
§fn exp(&self) -> Decimal
fn exp(&self) -> Decimal
0.0000002
.§fn checked_exp(&self) -> Option<Decimal>
fn checked_exp(&self) -> Option<Decimal>
0.0000002
. Returns None
on overflow.§fn exp_with_tolerance(&self, tolerance: Decimal) -> Decimal
fn exp_with_tolerance(&self, tolerance: Decimal) -> Decimal
tolerance
provided as a hint
as to when to stop calculating. A larger tolerance will cause the number to stop calculating
sooner at the potential cost of a slightly less accurate result.§fn checked_exp_with_tolerance(&self, tolerance: Decimal) -> Option<Decimal>
fn checked_exp_with_tolerance(&self, tolerance: Decimal) -> Option<Decimal>
tolerance
provided as a hint
as to when to stop calculating. A larger tolerance will cause the number to stop calculating
sooner at the potential cost of a slightly less accurate result.
Returns None
on overflow.§fn checked_powi(&self, exp: i64) -> Option<Decimal>
fn checked_powi(&self, exp: i64) -> Option<Decimal>
None
on overflow.§fn checked_powu(&self, exp: u64) -> Option<Decimal>
fn checked_powu(&self, exp: u64) -> Option<Decimal>
None
on overflow.§fn checked_powf(&self, exp: f64) -> Option<Decimal>
fn checked_powf(&self, exp: f64) -> Option<Decimal>
None
on overflow.§fn powd(&self, exp: Decimal) -> Decimal
fn powd(&self, exp: Decimal) -> Decimal
exp
is not whole then the approximation
ey*ln(x) is used.§fn checked_powd(&self, exp: Decimal) -> Option<Decimal>
fn checked_powd(&self, exp: Decimal) -> Option<Decimal>
None
on overflow.
If exp
is not whole then the approximation ey*ln(x) is used.§fn ln(&self) -> Decimal
fn ln(&self) -> Decimal
§fn checked_ln(&self) -> Option<Decimal>
fn checked_ln(&self) -> Option<Decimal>
None
for negative numbers or zero.§fn checked_log10(&self) -> Option<Decimal>
fn checked_log10(&self) -> Option<Decimal>
None
for negative numbers or zero.§fn checked_norm_pdf(&self) -> Option<Decimal>
fn checked_norm_pdf(&self) -> Option<Decimal>
None
on overflow.§fn checked_sin(&self) -> Option<Decimal>
fn checked_sin(&self) -> Option<Decimal>
§fn checked_cos(&self) -> Option<Decimal>
fn checked_cos(&self) -> Option<Decimal>
§fn tan(&self) -> Decimal
fn tan(&self) -> Decimal
§fn checked_tan(&self) -> Option<Decimal>
fn checked_tan(&self) -> Option<Decimal>
§impl<'a> MulAssign<&'a Decimal> for &'a mut Decimal
impl<'a> MulAssign<&'a Decimal> for &'a mut Decimal
§fn mul_assign(&mut self, other: &'a Decimal)
fn mul_assign(&mut self, other: &'a Decimal)
*=
operation. Read more§impl<'a> MulAssign<&'a Decimal> for Decimal
impl<'a> MulAssign<&'a Decimal> for Decimal
§fn mul_assign(&mut self, other: &'a Decimal)
fn mul_assign(&mut self, other: &'a Decimal)
*=
operation. Read more§impl<'a> MulAssign<Decimal> for &'a mut Decimal
impl<'a> MulAssign<Decimal> for &'a mut Decimal
§fn mul_assign(&mut self, other: Decimal)
fn mul_assign(&mut self, other: Decimal)
*=
operation. Read more§impl MulAssign for Decimal
impl MulAssign for Decimal
§fn mul_assign(&mut self, other: Decimal)
fn mul_assign(&mut self, other: Decimal)
*=
operation. Read more§impl Num for Decimal
impl Num for Decimal
type FromStrRadixErr = Error
§fn from_str_radix(
str: &str,
radix: u32,
) -> Result<Decimal, <Decimal as Num>::FromStrRadixErr>
fn from_str_radix( str: &str, radix: u32, ) -> Result<Decimal, <Decimal as Num>::FromStrRadixErr>
2..=36
). Read more§impl Ord for Decimal
impl Ord for Decimal
§impl PartialOrd for Decimal
impl PartialOrd for Decimal
§fn partial_cmp(&self, other: &Decimal) -> Option<Ordering>
fn partial_cmp(&self, other: &Decimal) -> Option<Ordering>
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self
and other
) and is used by the <=
operator. Read more§impl<'a> RemAssign<&'a Decimal> for &'a mut Decimal
impl<'a> RemAssign<&'a Decimal> for &'a mut Decimal
§fn rem_assign(&mut self, other: &'a Decimal)
fn rem_assign(&mut self, other: &'a Decimal)
%=
operation. Read more§impl<'a> RemAssign<&'a Decimal> for Decimal
impl<'a> RemAssign<&'a Decimal> for Decimal
§fn rem_assign(&mut self, other: &'a Decimal)
fn rem_assign(&mut self, other: &'a Decimal)
%=
operation. Read more§impl<'a> RemAssign<Decimal> for &'a mut Decimal
impl<'a> RemAssign<Decimal> for &'a mut Decimal
§fn rem_assign(&mut self, other: Decimal)
fn rem_assign(&mut self, other: Decimal)
%=
operation. Read more§impl RemAssign for Decimal
impl RemAssign for Decimal
§fn rem_assign(&mut self, other: Decimal)
fn rem_assign(&mut self, other: Decimal)
%=
operation. Read more§impl Serialize for Decimal
impl Serialize for Decimal
§fn serialize<S>(
&self,
serializer: S,
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>where
S: Serializer,
fn serialize<S>(
&self,
serializer: S,
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>where
S: Serializer,
§impl Signed for Decimal
impl Signed for Decimal
§fn is_positive(&self) -> bool
fn is_positive(&self) -> bool
§fn is_negative(&self) -> bool
fn is_negative(&self) -> bool
§impl<'a> SubAssign<&'a Decimal> for &'a mut Decimal
impl<'a> SubAssign<&'a Decimal> for &'a mut Decimal
§fn sub_assign(&mut self, other: &'a Decimal)
fn sub_assign(&mut self, other: &'a Decimal)
-=
operation. Read more§impl<'a> SubAssign<&'a Decimal> for Decimal
impl<'a> SubAssign<&'a Decimal> for Decimal
§fn sub_assign(&mut self, other: &'a Decimal)
fn sub_assign(&mut self, other: &'a Decimal)
-=
operation. Read more§impl<'a> SubAssign<Decimal> for &'a mut Decimal
impl<'a> SubAssign<Decimal> for &'a mut Decimal
§fn sub_assign(&mut self, other: Decimal)
fn sub_assign(&mut self, other: Decimal)
-=
operation. Read more§impl SubAssign for Decimal
impl SubAssign for Decimal
§fn sub_assign(&mut self, other: Decimal)
fn sub_assign(&mut self, other: Decimal)
-=
operation. Read more§impl ToPrimitive for Decimal
impl ToPrimitive for Decimal
§fn to_i64(&self) -> Option<i64>
fn to_i64(&self) -> Option<i64>
self
to an i64
. If the value cannot be
represented by an i64
, then None
is returned.§fn to_i128(&self) -> Option<i128>
fn to_i128(&self) -> Option<i128>
self
to an i128
. If the value cannot be
represented by an i128
(i64
under the default implementation), then
None
is returned. Read more§fn to_u64(&self) -> Option<u64>
fn to_u64(&self) -> Option<u64>
self
to a u64
. If the value cannot be
represented by a u64
, then None
is returned.§fn to_u128(&self) -> Option<u128>
fn to_u128(&self) -> Option<u128>
self
to a u128
. If the value cannot be
represented by a u128
(u64
under the default implementation), then
None
is returned. Read more§fn to_f64(&self) -> Option<f64>
fn to_f64(&self) -> Option<f64>
self
to an f64
. Overflows may map to positive
or negative inifinity, otherwise None
is returned if the value cannot
be represented by an f64
. Read moresource§fn to_isize(&self) -> Option<isize>
fn to_isize(&self) -> Option<isize>
self
to an isize
. If the value cannot be
represented by an isize
, then None
is returned.source§fn to_i8(&self) -> Option<i8>
fn to_i8(&self) -> Option<i8>
self
to an i8
. If the value cannot be
represented by an i8
, then None
is returned.source§fn to_i16(&self) -> Option<i16>
fn to_i16(&self) -> Option<i16>
self
to an i16
. If the value cannot be
represented by an i16
, then None
is returned.source§fn to_i32(&self) -> Option<i32>
fn to_i32(&self) -> Option<i32>
self
to an i32
. If the value cannot be
represented by an i32
, then None
is returned.source§fn to_usize(&self) -> Option<usize>
fn to_usize(&self) -> Option<usize>
self
to a usize
. If the value cannot be
represented by a usize
, then None
is returned.source§fn to_u8(&self) -> Option<u8>
fn to_u8(&self) -> Option<u8>
self
to a u8
. If the value cannot be
represented by a u8
, then None
is returned.source§fn to_u16(&self) -> Option<u16>
fn to_u16(&self) -> Option<u16>
self
to a u16
. If the value cannot be
represented by a u16
, then None
is returned.§impl TryFrom<&str> for Decimal
impl TryFrom<&str> for Decimal
Try to convert a &str
into a Decimal
.
Can fail if the value is out of range for Decimal
.
§impl TryFrom<f32> for Decimal
impl TryFrom<f32> for Decimal
Try to convert a f32
into a Decimal
.
Can fail if the value is out of range for Decimal
.
§impl TryFrom<f64> for Decimal
impl TryFrom<f64> for Decimal
Try to convert a f64
into a Decimal
.
Can fail if the value is out of range for Decimal
.
impl Copy for Decimal
impl Eq for Decimal
Auto Trait Implementations§
impl Freeze for Decimal
impl RefUnwindSafe for Decimal
impl Send for Decimal
impl Sync for Decimal
impl Unpin for Decimal
impl UnwindSafe for Decimal
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> CloneToUninit for Twhere
T: Copy,
impl<T> CloneToUninit for Twhere
T: Copy,
source§unsafe fn clone_to_uninit(&self, dst: *mut T)
unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§default unsafe fn clone_to_uninit(&self, dst: *mut T)
default unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)