Struct longport::Decimal

pub struct Decimal { /* private fields */ }
Expand description

Decimal represents a 128 bit representation of a fixed-precision decimal number. The finite set of values of type Decimal are of the form m / 10e, where m is an integer such that -296 < m < 296, and e is an integer between 0 and 28 inclusive.

Implementations§

§

impl Decimal

pub const MIN: Decimal = MIN

The smallest value that can be represented by this decimal type.

§Examples

Basic usage:

assert_eq!(Decimal::MIN, dec!(-79_228_162_514_264_337_593_543_950_335));

pub const MAX: Decimal = MAX

The largest value that can be represented by this decimal type.

§Examples

Basic usage:

assert_eq!(Decimal::MAX, dec!(79_228_162_514_264_337_593_543_950_335));

pub const ZERO: Decimal = ZERO

A constant representing 0.

§Examples

Basic usage:

assert_eq!(Decimal::ZERO, dec!(0));

pub const ONE: Decimal = ONE

A constant representing 1.

§Examples

Basic usage:

assert_eq!(Decimal::ONE, dec!(1));

pub const NEGATIVE_ONE: Decimal = NEGATIVE_ONE

A constant representing -1.

§Examples

Basic usage:

assert_eq!(Decimal::NEGATIVE_ONE, dec!(-1));

pub const TWO: Decimal = TWO

A constant representing 2.

§Examples

Basic usage:

assert_eq!(Decimal::TWO, dec!(2));

pub const TEN: Decimal = TEN

A constant representing 10.

§Examples

Basic usage:

assert_eq!(Decimal::TEN, dec!(10));

pub const ONE_HUNDRED: Decimal = ONE_HUNDRED

A constant representing 100.

§Examples

Basic usage:

assert_eq!(Decimal::ONE_HUNDRED, dec!(100));

pub const ONE_THOUSAND: Decimal = ONE_THOUSAND

A constant representing 1000.

§Examples

Basic usage:

assert_eq!(Decimal::ONE_THOUSAND, dec!(1000));

pub const PI: Decimal = _

A constant representing π as 3.1415926535897932384626433833

§Examples

Basic usage:

assert_eq!(Decimal::PI, dec!(3.1415926535897932384626433833));

pub const HALF_PI: Decimal = _

A constant representing π/2 as 1.5707963267948966192313216916

§Examples

Basic usage:

assert_eq!(Decimal::HALF_PI, dec!(1.5707963267948966192313216916));

pub const QUARTER_PI: Decimal = _

A constant representing π/4 as 0.7853981633974483096156608458

§Examples

Basic usage:

assert_eq!(Decimal::QUARTER_PI, dec!(0.7853981633974483096156608458));

pub const TWO_PI: Decimal = _

A constant representing 2π as 6.2831853071795864769252867666

§Examples

Basic usage:

assert_eq!(Decimal::TWO_PI, dec!(6.2831853071795864769252867666));

pub const E: Decimal = _

A constant representing Euler’s number (e) as 2.7182818284590452353602874714

§Examples

Basic usage:

assert_eq!(Decimal::E, dec!(2.7182818284590452353602874714));

pub const E_INVERSE: Decimal = _

A constant representing the inverse of Euler’s number (1/e) as 0.3678794411714423215955237702

§Examples

Basic usage:

assert_eq!(Decimal::E_INVERSE, dec!(0.3678794411714423215955237702));

pub fn new(num: i64, scale: u32) -> Decimal

Returns a Decimal with a 64 bit m representation and corresponding e scale.

§Arguments
  • num - An i64 that represents the m portion of the decimal number
  • scale - A u32 representing the e portion of the decimal number.
§Panics

This function panics if scale is > 28.

§Example
let pi = Decimal::new(3141, 3);
assert_eq!(pi.to_string(), "3.141");

pub const fn try_new(num: i64, scale: u32) -> Result<Decimal, Error>

Checked version of Decimal::new. Will return Err instead of panicking at run-time.

§Example
let max = Decimal::try_new(i64::MAX, u32::MAX);
assert!(max.is_err());

pub fn from_i128_with_scale(num: i128, scale: u32) -> Decimal

Creates a Decimal using a 128 bit signed m representation and corresponding e scale.

§Arguments
  • num - An i128 that represents the m portion of the decimal number
  • scale - A u32 representing the e portion of the decimal number.
§Panics

This function panics if scale is > 28 or if num exceeds the maximum supported 96 bits.

§Example
let pi = Decimal::from_i128_with_scale(3141i128, 3);
assert_eq!(pi.to_string(), "3.141");

pub const fn try_from_i128_with_scale( num: i128, scale: u32, ) -> Result<Decimal, Error>

Checked version of Decimal::from_i128_with_scale. Will return Err instead of panicking at run-time.

§Example
let max = Decimal::try_from_i128_with_scale(i128::MAX, u32::MAX);
assert!(max.is_err());

pub const fn from_parts( lo: u32, mid: u32, hi: u32, negative: bool, scale: u32, ) -> Decimal

Returns a Decimal using the instances constituent parts.

§Arguments
  • lo - The low 32 bits of a 96-bit integer.
  • mid - The middle 32 bits of a 96-bit integer.
  • hi - The high 32 bits of a 96-bit integer.
  • negative - true to indicate a negative number.
  • scale - A power of 10 ranging from 0 to 28.
§Caution: Undefined behavior

While a scale greater than 28 can be passed in, it will be automatically capped by this function at the maximum precision. The library opts towards this functionality as opposed to a panic to ensure that the function can be treated as constant. This may lead to undefined behavior in downstream applications and should be treated with caution.

§Example
let pi = Decimal::from_parts(1102470952, 185874565, 1703060790, false, 28);
assert_eq!(pi.to_string(), "3.1415926535897932384626433832");

pub fn from_scientific(value: &str) -> Result<Decimal, Error>

Returns a Result which if successful contains the Decimal constitution of the scientific notation provided by value.

§Arguments
  • value - The scientific notation of the Decimal.
§Example
let value = Decimal::from_scientific("9.7e-7")?;
assert_eq!(value.to_string(), "0.00000097");

pub fn from_str_radix(str: &str, radix: u32) -> Result<Decimal, Error>

Converts a string slice in a given base to a decimal.

The string is expected to be an optional + sign followed by digits. Digits are a subset of these characters, depending on radix, and will return an error if outside the expected range:

  • 0-9
  • a-z
  • A-Z
§Examples

Basic usage:

assert_eq!(Decimal::from_str_radix("A", 16)?.to_string(), "10");

pub fn from_str_exact(str: &str) -> Result<Decimal, Error>

Parses a string slice into a decimal. If the value underflows and cannot be represented with the given scale then this will return an error.

§Examples

Basic usage:

assert_eq!(Decimal::from_str_exact("0.001")?.to_string(), "0.001");
assert_eq!(Decimal::from_str_exact("0.00000_00000_00000_00000_00000_001")?.to_string(), "0.0000000000000000000000000001");
assert_eq!(Decimal::from_str_exact("0.00000_00000_00000_00000_00000_0001"), Err(Error::Underflow));

pub const fn scale(&self) -> u32

Returns the scale of the decimal number, otherwise known as e.

§Example
let num = Decimal::new(1234, 3);
assert_eq!(num.scale(), 3u32);

pub const fn mantissa(&self) -> i128

Returns the mantissa of the decimal number.

§Example
use rust_decimal_macros::dec;

let num = dec!(-1.2345678);
assert_eq!(num.mantissa(), -12345678i128);
assert_eq!(num.scale(), 7);

pub const fn is_zero(&self) -> bool

Returns true if this Decimal number is equivalent to zero.

§Example
let num = Decimal::ZERO;
assert!(num.is_zero());

pub fn is_integer(&self) -> bool

Returns true if this Decimal number has zero fractional part (is equal to an integer)

§Example
assert_eq!(dec!(5).is_integer(), true);
// Trailing zeros are also ignored
assert_eq!(dec!(5.0000).is_integer(), true);
// If there is a fractional part then it is not an integer
assert_eq!(dec!(5.1).is_integer(), false);

pub fn set_sign(&mut self, positive: bool)

👎Deprecated since 1.4.0: please use set_sign_positive instead

An optimized method for changing the sign of a decimal number.

§Arguments
  • positive: true if the resulting decimal should be positive.
§Example
let mut one = Decimal::ONE;
one.set_sign(false);
assert_eq!(one.to_string(), "-1");

pub fn set_sign_positive(&mut self, positive: bool)

An optimized method for changing the sign of a decimal number.

§Arguments
  • positive: true if the resulting decimal should be positive.
§Example
let mut one = Decimal::ONE;
one.set_sign_positive(false);
assert_eq!(one.to_string(), "-1");

pub fn set_sign_negative(&mut self, negative: bool)

An optimized method for changing the sign of a decimal number.

§Arguments
  • negative: true if the resulting decimal should be negative.
§Example
let mut one = Decimal::ONE;
one.set_sign_negative(true);
assert_eq!(one.to_string(), "-1");

pub fn set_scale(&mut self, scale: u32) -> Result<(), Error>

An optimized method for changing the scale of a decimal number.

§Arguments
  • scale: the new scale of the number
§Example
let mut one = Decimal::ONE;
one.set_scale(5)?;
assert_eq!(one.to_string(), "0.00001");

pub fn rescale(&mut self, scale: u32)

Modifies the Decimal towards the desired scale, attempting to do so without changing the underlying number itself.

Setting the scale to something less then the current Decimals scale will cause the newly created Decimal to perform rounding using the MidpointAwayFromZero strategy.

Scales greater than the maximum precision that can be represented by Decimal will be automatically rounded to either Decimal::MAX_PRECISION or the maximum precision that can be represented with the given mantissa.

§Arguments
  • scale: The desired scale to use for the new Decimal number.
§Example
use rust_decimal_macros::dec;

// Rescaling to a higher scale preserves the value
let mut number = dec!(1.123);
assert_eq!(number.scale(), 3);
number.rescale(6);
assert_eq!(number.to_string(), "1.123000");
assert_eq!(number.scale(), 6);

// Rescaling to a lower scale forces the number to be rounded
let mut number = dec!(1.45);
assert_eq!(number.scale(), 2);
number.rescale(1);
assert_eq!(number.to_string(), "1.5");
assert_eq!(number.scale(), 1);

// This function never fails. Consequently, if a scale is provided that is unable to be
// represented using the given mantissa, then the maximum possible scale is used.
let mut number = dec!(11.76470588235294);
assert_eq!(number.scale(), 14);
number.rescale(28);
// A scale of 28 cannot be represented given this mantissa, however it was able to represent
// a number with a scale of 27
assert_eq!(number.to_string(), "11.764705882352940000000000000");
assert_eq!(number.scale(), 27);

pub const fn serialize(&self) -> [u8; 16]

Returns a serialized version of the decimal number. The resulting byte array will have the following representation:

  • Bytes 1-4: flags
  • Bytes 5-8: lo portion of m
  • Bytes 9-12: mid portion of m
  • Bytes 13-16: high portion of m

pub fn deserialize(bytes: [u8; 16]) -> Decimal

Deserializes the given bytes into a decimal number. The deserialized byte representation must be 16 bytes and adhere to the following convention:

  • Bytes 1-4: flags
  • Bytes 5-8: lo portion of m
  • Bytes 9-12: mid portion of m
  • Bytes 13-16: high portion of m

pub fn is_negative(&self) -> bool

👎Deprecated since 0.6.3: please use is_sign_negative instead

Returns true if the decimal is negative.

pub fn is_positive(&self) -> bool

👎Deprecated since 0.6.3: please use is_sign_positive instead

Returns true if the decimal is positive.

pub const fn is_sign_negative(&self) -> bool

Returns true if the sign bit of the decimal is negative.

§Example
assert_eq!(true, Decimal::new(-1, 0).is_sign_negative());
assert_eq!(false, Decimal::new(1, 0).is_sign_negative());

pub const fn is_sign_positive(&self) -> bool

Returns true if the sign bit of the decimal is positive.

§Example
assert_eq!(false, Decimal::new(-1, 0).is_sign_positive());
assert_eq!(true, Decimal::new(1, 0).is_sign_positive());

pub const fn min_value() -> Decimal

👎Deprecated since 1.12.0: Use the associated constant Decimal::MIN

Returns the minimum possible number that Decimal can represent.

pub const fn max_value() -> Decimal

👎Deprecated since 1.12.0: Use the associated constant Decimal::MAX

Returns the maximum possible number that Decimal can represent.

pub fn trunc(&self) -> Decimal

Returns a new Decimal integral with no fractional portion. This is a true truncation whereby no rounding is performed.

§Example
let pi = dec!(3.141);
assert_eq!(pi.trunc(), dec!(3));

// Negative numbers are similarly truncated without rounding
let neg = dec!(-1.98765);
assert_eq!(neg.trunc(), Decimal::NEGATIVE_ONE);

pub fn trunc_with_scale(&self, scale: u32) -> Decimal

Returns a new Decimal with the fractional portion delimited by scale. This is a true truncation whereby no rounding is performed.

§Example
let pi = dec!(3.141592);
assert_eq!(pi.trunc_with_scale(2), dec!(3.14));

// Negative numbers are similarly truncated without rounding
let neg = dec!(-1.98765);
assert_eq!(neg.trunc_with_scale(1), dec!(-1.9));

pub fn fract(&self) -> Decimal

Returns a new Decimal representing the fractional portion of the number.

§Example
let pi = Decimal::new(3141, 3);
let fract = Decimal::new(141, 3);
// note that it returns a decimal
assert_eq!(pi.fract(), fract);

pub fn abs(&self) -> Decimal

Computes the absolute value of self.

§Example
let num = Decimal::new(-3141, 3);
assert_eq!(num.abs().to_string(), "3.141");

pub fn floor(&self) -> Decimal

Returns the largest integer less than or equal to a number.

§Example
let num = Decimal::new(3641, 3);
assert_eq!(num.floor().to_string(), "3");

pub fn ceil(&self) -> Decimal

Returns the smallest integer greater than or equal to a number.

§Example
let num = Decimal::new(3141, 3);
assert_eq!(num.ceil().to_string(), "4");
let num = Decimal::new(3, 0);
assert_eq!(num.ceil().to_string(), "3");

pub fn max(self, other: Decimal) -> Decimal

Returns the maximum of the two numbers.

let x = Decimal::new(1, 0);
let y = Decimal::new(2, 0);
assert_eq!(y, x.max(y));

pub fn min(self, other: Decimal) -> Decimal

Returns the minimum of the two numbers.

let x = Decimal::new(1, 0);
let y = Decimal::new(2, 0);
assert_eq!(x, x.min(y));

pub fn normalize(&self) -> Decimal

Strips any trailing zero’s from a Decimal and converts -0 to 0.

§Example
let number = Decimal::from_str("3.100")?;
assert_eq!(number.normalize().to_string(), "3.1");

pub fn normalize_assign(&mut self)

An in place version of normalize. Strips any trailing zero’s from a Decimal and converts -0 to 0.

§Example
let mut number = Decimal::from_str("3.100")?;
assert_eq!(number.to_string(), "3.100");
number.normalize_assign();
assert_eq!(number.to_string(), "3.1");

pub fn round(&self) -> Decimal

Returns a new Decimal number with no fractional portion (i.e. an integer). Rounding currently follows “Bankers Rounding” rules. e.g. 6.5 -> 6, 7.5 -> 8

§Example
// Demonstrating bankers rounding...
let number_down = Decimal::new(65, 1);
let number_up   = Decimal::new(75, 1);
assert_eq!(number_down.round().to_string(), "6");
assert_eq!(number_up.round().to_string(), "8");

pub fn round_dp_with_strategy( &self, dp: u32, strategy: RoundingStrategy, ) -> Decimal

Returns a new Decimal number with the specified number of decimal points for fractional portion. Rounding is performed using the provided [RoundingStrategy]

§Arguments
  • dp: the number of decimal points to round to.
  • strategy: the [RoundingStrategy] to use.
§Example
let tax = dec!(3.4395);
assert_eq!(tax.round_dp_with_strategy(2, RoundingStrategy::MidpointAwayFromZero).to_string(), "3.44");

pub fn round_dp(&self, dp: u32) -> Decimal

Returns a new Decimal number with the specified number of decimal points for fractional portion. Rounding currently follows “Bankers Rounding” rules. e.g. 6.5 -> 6, 7.5 -> 8

§Arguments
  • dp: the number of decimal points to round to.
§Example
let pi = dec!(3.1415926535897932384626433832);
assert_eq!(pi.round_dp(2).to_string(), "3.14");

pub fn round_sf(&self, digits: u32) -> Option<Decimal>

Returns Some(Decimal) number rounded to the specified number of significant digits. If the resulting number is unable to be represented by the Decimal number then None will be returned. When the number of significant figures of the Decimal being rounded is greater than the requested number of significant digits then rounding will be performed using MidpointNearestEven strategy.

§Arguments
  • digits: the number of significant digits to round to.
§Remarks

A significant figure is determined using the following rules:

  1. Non-zero digits are always significant.
  2. Zeros between non-zero digits are always significant.
  3. Leading zeros are never significant.
  4. Trailing zeros are only significant if the number contains a decimal point.
§Example
use rust_decimal_macros::dec;

let value = dec!(305.459);
assert_eq!(value.round_sf(0), Some(dec!(0)));
assert_eq!(value.round_sf(1), Some(dec!(300)));
assert_eq!(value.round_sf(2), Some(dec!(310)));
assert_eq!(value.round_sf(3), Some(dec!(305)));
assert_eq!(value.round_sf(4), Some(dec!(305.5)));
assert_eq!(value.round_sf(5), Some(dec!(305.46)));
assert_eq!(value.round_sf(6), Some(dec!(305.459)));
assert_eq!(value.round_sf(7), Some(dec!(305.4590)));
assert_eq!(Decimal::MAX.round_sf(1), None);

let value = dec!(0.012301);
assert_eq!(value.round_sf(3), Some(dec!(0.0123)));

pub fn round_sf_with_strategy( &self, digits: u32, strategy: RoundingStrategy, ) -> Option<Decimal>

Returns Some(Decimal) number rounded to the specified number of significant digits. If the resulting number is unable to be represented by the Decimal number then None will be returned. When the number of significant figures of the Decimal being rounded is greater than the requested number of significant digits then rounding will be performed using the provided [RoundingStrategy].

§Arguments
  • digits: the number of significant digits to round to.
  • strategy: if required, the rounding strategy to use.
§Remarks

A significant figure is determined using the following rules:

  1. Non-zero digits are always significant.
  2. Zeros between non-zero digits are always significant.
  3. Leading zeros are never significant.
  4. Trailing zeros are only significant if the number contains a decimal point.
§Example
use rust_decimal_macros::dec;

let value = dec!(305.459);
assert_eq!(value.round_sf_with_strategy(0, RoundingStrategy::ToZero), Some(dec!(0)));
assert_eq!(value.round_sf_with_strategy(1, RoundingStrategy::ToZero), Some(dec!(300)));
assert_eq!(value.round_sf_with_strategy(2, RoundingStrategy::ToZero), Some(dec!(300)));
assert_eq!(value.round_sf_with_strategy(3, RoundingStrategy::ToZero), Some(dec!(305)));
assert_eq!(value.round_sf_with_strategy(4, RoundingStrategy::ToZero), Some(dec!(305.4)));
assert_eq!(value.round_sf_with_strategy(5, RoundingStrategy::ToZero), Some(dec!(305.45)));
assert_eq!(value.round_sf_with_strategy(6, RoundingStrategy::ToZero), Some(dec!(305.459)));
assert_eq!(value.round_sf_with_strategy(7, RoundingStrategy::ToZero), Some(dec!(305.4590)));
assert_eq!(Decimal::MAX.round_sf_with_strategy(1, RoundingStrategy::ToZero), Some(dec!(70000000000000000000000000000)));

let value = dec!(0.012301);
assert_eq!(value.round_sf_with_strategy(3, RoundingStrategy::AwayFromZero), Some(dec!(0.0124)));

pub const fn unpack(&self) -> UnpackedDecimal

Convert Decimal to an internal representation of the underlying struct. This is useful for debugging the internal state of the object.

§Important Disclaimer

This is primarily intended for library maintainers. The internal representation of a Decimal is considered “unstable” for public use.

§Example
use rust_decimal_macros::dec;

let pi = dec!(3.1415926535897932384626433832);
assert_eq!(format!("{:?}", pi), "3.1415926535897932384626433832");
assert_eq!(format!("{:?}", pi.unpack()), "UnpackedDecimal { \
    negative: false, scale: 28, hi: 1703060790, mid: 185874565, lo: 1102470952 \
}");

pub fn from_f32_retain(n: f32) -> Option<Decimal>

Parses a 32-bit float into a Decimal number whilst retaining any non-guaranteed precision.

Typically when a float is parsed in Rust Decimal, any excess bits (after ~7.22 decimal points for f32 as per IEEE-754) are removed due to any digits following this are considered an approximation at best. This function bypasses this additional step and retains these excess bits.

§Example
// Usually floats are parsed leveraging float guarantees. i.e. 0.1_f32 => 0.1
assert_eq!("0.1", Decimal::from_f32(0.1_f32).unwrap().to_string());

// Sometimes, we may want to represent the approximation exactly.
assert_eq!("0.100000001490116119384765625", Decimal::from_f32_retain(0.1_f32).unwrap().to_string());

pub fn from_f64_retain(n: f64) -> Option<Decimal>

Parses a 64-bit float into a Decimal number whilst retaining any non-guaranteed precision.

Typically when a float is parsed in Rust Decimal, any excess bits (after ~15.95 decimal points for f64 as per IEEE-754) are removed due to any digits following this are considered an approximation at best. This function bypasses this additional step and retains these excess bits.

§Example
// Usually floats are parsed leveraging float guarantees. i.e. 0.1_f64 => 0.1
assert_eq!("0.1", Decimal::from_f64(0.1_f64).unwrap().to_string());

// Sometimes, we may want to represent the approximation exactly.
assert_eq!("0.1000000000000000055511151231", Decimal::from_f64_retain(0.1_f64).unwrap().to_string());
§

impl Decimal

pub fn checked_add(self, other: Decimal) -> Option<Decimal>

Checked addition. Computes self + other, returning None if overflow occurred.

pub fn saturating_add(self, other: Decimal) -> Decimal

Saturating addition. Computes self + other, saturating at the relevant upper or lower boundary.

pub fn checked_mul(self, other: Decimal) -> Option<Decimal>

Checked multiplication. Computes self * other, returning None if overflow occurred.

pub fn saturating_mul(self, other: Decimal) -> Decimal

Saturating multiplication. Computes self * other, saturating at the relevant upper or lower boundary.

pub fn checked_sub(self, other: Decimal) -> Option<Decimal>

Checked subtraction. Computes self - other, returning None if overflow occurred.

pub fn saturating_sub(self, other: Decimal) -> Decimal

Saturating subtraction. Computes self - other, saturating at the relevant upper or lower boundary.

pub fn checked_div(self, other: Decimal) -> Option<Decimal>

Checked division. Computes self / other, returning None if overflow occurred.

pub fn checked_rem(self, other: Decimal) -> Option<Decimal>

Checked remainder. Computes self % other, returning None if overflow occurred.

Trait Implementations§

§

impl<'a, 'b> Add<&'b Decimal> for &'a Decimal

§

type Output = Decimal

The resulting type after applying the + operator.
§

fn add(self, other: &Decimal) -> Decimal

Performs the + operation. Read more
§

impl<'a> Add<&'a Decimal> for Decimal

§

type Output = Decimal

The resulting type after applying the + operator.
§

fn add(self, other: &Decimal) -> Decimal

Performs the + operation. Read more
§

impl<'a> Add<Decimal> for &'a Decimal

§

type Output = Decimal

The resulting type after applying the + operator.
§

fn add(self, other: Decimal) -> Decimal

Performs the + operation. Read more
§

impl Add for Decimal

§

type Output = Decimal

The resulting type after applying the + operator.
§

fn add(self, other: Decimal) -> Decimal

Performs the + operation. Read more
§

impl<'a> AddAssign<&'a Decimal> for &'a mut Decimal

§

fn add_assign(&mut self, other: &'a Decimal)

Performs the += operation. Read more
§

impl<'a> AddAssign<&'a Decimal> for Decimal

§

fn add_assign(&mut self, other: &'a Decimal)

Performs the += operation. Read more
§

impl<'a> AddAssign<Decimal> for &'a mut Decimal

§

fn add_assign(&mut self, other: Decimal)

Performs the += operation. Read more
§

impl AddAssign for Decimal

§

fn add_assign(&mut self, other: Decimal)

Performs the += operation. Read more
§

impl CheckedAdd for Decimal

§

fn checked_add(&self, v: &Decimal) -> Option<Decimal>

Adds two numbers, checking for overflow. If overflow happens, None is returned.
§

impl CheckedDiv for Decimal

§

fn checked_div(&self, v: &Decimal) -> Option<Decimal>

Divides two numbers, checking for underflow, overflow and division by zero. If any of that happens, None is returned.
§

impl CheckedMul for Decimal

§

fn checked_mul(&self, v: &Decimal) -> Option<Decimal>

Multiplies two numbers, checking for underflow or overflow. If underflow or overflow happens, None is returned.
§

impl CheckedRem for Decimal

§

fn checked_rem(&self, v: &Decimal) -> Option<Decimal>

Finds the remainder of dividing two numbers, checking for underflow, overflow and division by zero. If any of that happens, None is returned. Read more
§

impl CheckedSub for Decimal

§

fn checked_sub(&self, v: &Decimal) -> Option<Decimal>

Subtracts two numbers, checking for underflow. If underflow happens, None is returned.
§

impl Clone for Decimal

§

fn clone(&self) -> Decimal

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
§

impl Debug for Decimal

§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
§

impl Default for Decimal

§

fn default() -> Decimal

Returns the default value for a Decimal (equivalent to Decimal::ZERO). Read more

§

impl<'de> Deserialize<'de> for Decimal

§

fn deserialize<D>( deserializer: D, ) -> Result<Decimal, <D as Deserializer<'de>>::Error>
where D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
§

impl Display for Decimal

§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
§

impl<'a, 'b> Div<&'b Decimal> for &'a Decimal

§

type Output = Decimal

The resulting type after applying the / operator.
§

fn div(self, other: &Decimal) -> Decimal

Performs the / operation. Read more
§

impl<'a> Div<&'a Decimal> for Decimal

§

type Output = Decimal

The resulting type after applying the / operator.
§

fn div(self, other: &Decimal) -> Decimal

Performs the / operation. Read more
§

impl<'a> Div<Decimal> for &'a Decimal

§

type Output = Decimal

The resulting type after applying the / operator.
§

fn div(self, other: Decimal) -> Decimal

Performs the / operation. Read more
§

impl Div for Decimal

§

type Output = Decimal

The resulting type after applying the / operator.
§

fn div(self, other: Decimal) -> Decimal

Performs the / operation. Read more
§

impl<'a> DivAssign<&'a Decimal> for &'a mut Decimal

§

fn div_assign(&mut self, other: &'a Decimal)

Performs the /= operation. Read more
§

impl<'a> DivAssign<&'a Decimal> for Decimal

§

fn div_assign(&mut self, other: &'a Decimal)

Performs the /= operation. Read more
§

impl<'a> DivAssign<Decimal> for &'a mut Decimal

§

fn div_assign(&mut self, other: Decimal)

Performs the /= operation. Read more
§

impl DivAssign for Decimal

§

fn div_assign(&mut self, other: Decimal)

Performs the /= operation. Read more
§

impl From<i128> for Decimal

Conversion to Decimal.

§

fn from(t: i128) -> Decimal

Converts to this type from the input type.
§

impl From<i16> for Decimal

Conversion to Decimal.

§

fn from(t: i16) -> Decimal

Converts to this type from the input type.
§

impl From<i32> for Decimal

Conversion to Decimal.

§

fn from(t: i32) -> Decimal

Converts to this type from the input type.
§

impl From<i64> for Decimal

Conversion to Decimal.

§

fn from(t: i64) -> Decimal

Converts to this type from the input type.
§

impl From<i8> for Decimal

Conversion to Decimal.

§

fn from(t: i8) -> Decimal

Converts to this type from the input type.
§

impl From<isize> for Decimal

Conversion to Decimal.

§

fn from(t: isize) -> Decimal

Converts to this type from the input type.
§

impl From<u128> for Decimal

Conversion to Decimal.

§

fn from(t: u128) -> Decimal

Converts to this type from the input type.
§

impl From<u16> for Decimal

Conversion to Decimal.

§

fn from(t: u16) -> Decimal

Converts to this type from the input type.
§

impl From<u32> for Decimal

Conversion to Decimal.

§

fn from(t: u32) -> Decimal

Converts to this type from the input type.
§

impl From<u64> for Decimal

Conversion to Decimal.

§

fn from(t: u64) -> Decimal

Converts to this type from the input type.
§

impl From<u8> for Decimal

Conversion to Decimal.

§

fn from(t: u8) -> Decimal

Converts to this type from the input type.
§

impl From<usize> for Decimal

Conversion to Decimal.

§

fn from(t: usize) -> Decimal

Converts to this type from the input type.
§

impl FromPrimitive for Decimal

§

fn from_i32(n: i32) -> Option<Decimal>

Converts an i32 to return an optional value of this type. If the value cannot be represented by this type, then None is returned.
§

fn from_i64(n: i64) -> Option<Decimal>

Converts an i64 to return an optional value of this type. If the value cannot be represented by this type, then None is returned.
§

fn from_i128(n: i128) -> Option<Decimal>

Converts an i128 to return an optional value of this type. If the value cannot be represented by this type, then None is returned. Read more
§

fn from_u32(n: u32) -> Option<Decimal>

Converts an u32 to return an optional value of this type. If the value cannot be represented by this type, then None is returned.
§

fn from_u64(n: u64) -> Option<Decimal>

Converts an u64 to return an optional value of this type. If the value cannot be represented by this type, then None is returned.
§

fn from_u128(n: u128) -> Option<Decimal>

Converts an u128 to return an optional value of this type. If the value cannot be represented by this type, then None is returned. Read more
§

fn from_f32(n: f32) -> Option<Decimal>

Converts a f32 to return an optional value of this type. If the value cannot be represented by this type, then None is returned.
§

fn from_f64(n: f64) -> Option<Decimal>

Converts a f64 to return an optional value of this type. If the value cannot be represented by this type, then None is returned. Read more
source§

fn from_isize(n: isize) -> Option<Self>

Converts an isize to return an optional value of this type. If the value cannot be represented by this type, then None is returned.
source§

fn from_i8(n: i8) -> Option<Self>

Converts an i8 to return an optional value of this type. If the value cannot be represented by this type, then None is returned.
source§

fn from_i16(n: i16) -> Option<Self>

Converts an i16 to return an optional value of this type. If the value cannot be represented by this type, then None is returned.
source§

fn from_usize(n: usize) -> Option<Self>

Converts a usize to return an optional value of this type. If the value cannot be represented by this type, then None is returned.
source§

fn from_u8(n: u8) -> Option<Self>

Converts an u8 to return an optional value of this type. If the value cannot be represented by this type, then None is returned.
source§

fn from_u16(n: u16) -> Option<Self>

Converts an u16 to return an optional value of this type. If the value cannot be represented by this type, then None is returned.
§

impl FromStr for Decimal

§

type Err = Error

The associated error which can be returned from parsing.
§

fn from_str(value: &str) -> Result<Decimal, <Decimal as FromStr>::Err>

Parses a string s to return a value of this type. Read more
§

impl Hash for Decimal

§

fn hash<H>(&self, state: &mut H)
where H: Hasher,

Feeds this value into the given Hasher. Read more
1.3.0 · source§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
§

impl Inv for Decimal

§

type Output = Decimal

The result after applying the operator.
§

fn inv(self) -> Decimal

Returns the multiplicative inverse of self. Read more
§

impl LowerExp for Decimal

§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
§

impl MathematicalOps for Decimal

§

fn exp(&self) -> Decimal

The estimated exponential function, ex. Stops calculating when it is within tolerance of roughly 0.0000002.
§

fn checked_exp(&self) -> Option<Decimal>

The estimated exponential function, ex. Stops calculating when it is within tolerance of roughly 0.0000002. Returns None on overflow.
§

fn exp_with_tolerance(&self, tolerance: Decimal) -> Decimal

The estimated exponential function, ex using the tolerance provided as a hint as to when to stop calculating. A larger tolerance will cause the number to stop calculating sooner at the potential cost of a slightly less accurate result.
§

fn checked_exp_with_tolerance(&self, tolerance: Decimal) -> Option<Decimal>

The estimated exponential function, ex using the tolerance provided as a hint as to when to stop calculating. A larger tolerance will cause the number to stop calculating sooner at the potential cost of a slightly less accurate result. Returns None on overflow.
§

fn powi(&self, exp: i64) -> Decimal

Raise self to the given integer exponent: xy
§

fn checked_powi(&self, exp: i64) -> Option<Decimal>

Raise self to the given integer exponent xy returning None on overflow.
§

fn powu(&self, exp: u64) -> Decimal

Raise self to the given unsigned integer exponent: xy
§

fn checked_powu(&self, exp: u64) -> Option<Decimal>

Raise self to the given unsigned integer exponent xy returning None on overflow.
§

fn powf(&self, exp: f64) -> Decimal

Raise self to the given floating point exponent: xy
§

fn checked_powf(&self, exp: f64) -> Option<Decimal>

Raise self to the given floating point exponent xy returning None on overflow.
§

fn powd(&self, exp: Decimal) -> Decimal

Raise self to the given Decimal exponent: xy. If exp is not whole then the approximation ey*ln(x) is used.
§

fn checked_powd(&self, exp: Decimal) -> Option<Decimal>

Raise self to the given Decimal exponent xy returning None on overflow. If exp is not whole then the approximation ey*ln(x) is used.
§

fn sqrt(&self) -> Option<Decimal>

The square root of a Decimal. Uses a standard Babylonian method.
§

fn ln(&self) -> Decimal

Calculates the natural logarithm for a Decimal calculated using Taylor’s series.
§

fn checked_ln(&self) -> Option<Decimal>

Calculates the checked natural logarithm for a Decimal calculated using Taylor’s series. Returns None for negative numbers or zero.
§

fn log10(&self) -> Decimal

Calculates the base 10 logarithm of a specified Decimal number.
§

fn checked_log10(&self) -> Option<Decimal>

Calculates the checked base 10 logarithm of a specified Decimal number. Returns None for negative numbers or zero.
§

fn erf(&self) -> Decimal

Abramowitz Approximation of Error Function from wikipedia
§

fn norm_cdf(&self) -> Decimal

The Cumulative distribution function for a Normal distribution
§

fn norm_pdf(&self) -> Decimal

The Probability density function for a Normal distribution.
§

fn checked_norm_pdf(&self) -> Option<Decimal>

The Probability density function for a Normal distribution returning None on overflow.
§

fn sin(&self) -> Decimal

Computes the sine of a number (in radians). Panics upon overflow.
§

fn checked_sin(&self) -> Option<Decimal>

Computes the checked sine of a number (in radians).
§

fn cos(&self) -> Decimal

Computes the cosine of a number (in radians). Panics upon overflow.
§

fn checked_cos(&self) -> Option<Decimal>

Computes the checked cosine of a number (in radians).
§

fn tan(&self) -> Decimal

Computes the tangent of a number (in radians). Panics upon overflow or upon approaching a limit.
§

fn checked_tan(&self) -> Option<Decimal>

Computes the checked tangent of a number (in radians). Returns None on limit.
§

impl<'a, 'b> Mul<&'b Decimal> for &'a Decimal

§

type Output = Decimal

The resulting type after applying the * operator.
§

fn mul(self, other: &Decimal) -> Decimal

Performs the * operation. Read more
§

impl<'a> Mul<&'a Decimal> for Decimal

§

type Output = Decimal

The resulting type after applying the * operator.
§

fn mul(self, other: &Decimal) -> Decimal

Performs the * operation. Read more
§

impl<'a> Mul<Decimal> for &'a Decimal

§

type Output = Decimal

The resulting type after applying the * operator.
§

fn mul(self, other: Decimal) -> Decimal

Performs the * operation. Read more
§

impl Mul for Decimal

§

type Output = Decimal

The resulting type after applying the * operator.
§

fn mul(self, other: Decimal) -> Decimal

Performs the * operation. Read more
§

impl<'a> MulAssign<&'a Decimal> for &'a mut Decimal

§

fn mul_assign(&mut self, other: &'a Decimal)

Performs the *= operation. Read more
§

impl<'a> MulAssign<&'a Decimal> for Decimal

§

fn mul_assign(&mut self, other: &'a Decimal)

Performs the *= operation. Read more
§

impl<'a> MulAssign<Decimal> for &'a mut Decimal

§

fn mul_assign(&mut self, other: Decimal)

Performs the *= operation. Read more
§

impl MulAssign for Decimal

§

fn mul_assign(&mut self, other: Decimal)

Performs the *= operation. Read more
§

impl<'a> Neg for &'a Decimal

§

type Output = Decimal

The resulting type after applying the - operator.
§

fn neg(self) -> Decimal

Performs the unary - operation. Read more
§

impl Neg for Decimal

§

type Output = Decimal

The resulting type after applying the - operator.
§

fn neg(self) -> Decimal

Performs the unary - operation. Read more
§

impl Num for Decimal

§

type FromStrRadixErr = Error

§

fn from_str_radix( str: &str, radix: u32, ) -> Result<Decimal, <Decimal as Num>::FromStrRadixErr>

Convert from a string and radix (typically 2..=36). Read more
§

impl One for Decimal

§

fn one() -> Decimal

Returns the multiplicative identity element of Self, 1. Read more
source§

fn set_one(&mut self)

Sets self to the multiplicative identity element of Self, 1.
source§

fn is_one(&self) -> bool
where Self: PartialEq,

Returns true if self is equal to the multiplicative identity. Read more
§

impl Ord for Decimal

§

fn cmp(&self, other: &Decimal) -> Ordering

This method returns an Ordering between self and other. Read more
1.21.0 · source§

fn max(self, other: Self) -> Self
where Self: Sized,

Compares and returns the maximum of two values. Read more
1.21.0 · source§

fn min(self, other: Self) -> Self
where Self: Sized,

Compares and returns the minimum of two values. Read more
1.50.0 · source§

fn clamp(self, min: Self, max: Self) -> Self
where Self: Sized + PartialOrd,

Restrict a value to a certain interval. Read more
§

impl PartialEq for Decimal

§

fn eq(&self, other: &Decimal) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
§

impl PartialOrd for Decimal

§

fn partial_cmp(&self, other: &Decimal) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
1.0.0 · source§

fn lt(&self, other: &Rhs) -> bool

This method tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · source§

fn le(&self, other: &Rhs) -> bool

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0 · source§

fn gt(&self, other: &Rhs) -> bool

This method tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · source§

fn ge(&self, other: &Rhs) -> bool

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
§

impl Pow<Decimal> for Decimal

§

type Output = Decimal

The result after applying the operator.
§

fn pow(self, rhs: Decimal) -> <Decimal as Pow<Decimal>>::Output

Returns self to the power rhs. Read more
§

impl Pow<f64> for Decimal

§

type Output = Decimal

The result after applying the operator.
§

fn pow(self, rhs: f64) -> <Decimal as Pow<f64>>::Output

Returns self to the power rhs. Read more
§

impl Pow<i64> for Decimal

§

type Output = Decimal

The result after applying the operator.
§

fn pow(self, rhs: i64) -> <Decimal as Pow<i64>>::Output

Returns self to the power rhs. Read more
§

impl Pow<u64> for Decimal

§

type Output = Decimal

The result after applying the operator.
§

fn pow(self, rhs: u64) -> <Decimal as Pow<u64>>::Output

Returns self to the power rhs. Read more
§

impl<'a> Product<&'a Decimal> for Decimal

§

fn product<I>(iter: I) -> Decimal
where I: Iterator<Item = &'a Decimal>,

Panics if out-of-bounds

§

impl Product for Decimal

§

fn product<I>(iter: I) -> Decimal
where I: Iterator<Item = Decimal>,

Panics if out-of-bounds

§

impl<'a, 'b> Rem<&'b Decimal> for &'a Decimal

§

type Output = Decimal

The resulting type after applying the % operator.
§

fn rem(self, other: &Decimal) -> Decimal

Performs the % operation. Read more
§

impl<'a> Rem<&'a Decimal> for Decimal

§

type Output = Decimal

The resulting type after applying the % operator.
§

fn rem(self, other: &Decimal) -> Decimal

Performs the % operation. Read more
§

impl<'a> Rem<Decimal> for &'a Decimal

§

type Output = Decimal

The resulting type after applying the % operator.
§

fn rem(self, other: Decimal) -> Decimal

Performs the % operation. Read more
§

impl Rem for Decimal

§

type Output = Decimal

The resulting type after applying the % operator.
§

fn rem(self, other: Decimal) -> Decimal

Performs the % operation. Read more
§

impl<'a> RemAssign<&'a Decimal> for &'a mut Decimal

§

fn rem_assign(&mut self, other: &'a Decimal)

Performs the %= operation. Read more
§

impl<'a> RemAssign<&'a Decimal> for Decimal

§

fn rem_assign(&mut self, other: &'a Decimal)

Performs the %= operation. Read more
§

impl<'a> RemAssign<Decimal> for &'a mut Decimal

§

fn rem_assign(&mut self, other: Decimal)

Performs the %= operation. Read more
§

impl RemAssign for Decimal

§

fn rem_assign(&mut self, other: Decimal)

Performs the %= operation. Read more
§

impl Serialize for Decimal

§

fn serialize<S>( &self, serializer: S, ) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>
where S: Serializer,

Serialize this value into the given Serde serializer. Read more
§

impl Signed for Decimal

§

fn abs(&self) -> Decimal

Computes the absolute value. Read more
§

fn abs_sub(&self, other: &Decimal) -> Decimal

The positive difference of two numbers. Read more
§

fn signum(&self) -> Decimal

Returns the sign of the number. Read more
§

fn is_positive(&self) -> bool

Returns true if the number is positive and false if the number is zero or negative.
§

fn is_negative(&self) -> bool

Returns true if the number is negative and false if the number is zero or positive.
§

impl<'a, 'b> Sub<&'b Decimal> for &'a Decimal

§

type Output = Decimal

The resulting type after applying the - operator.
§

fn sub(self, other: &Decimal) -> Decimal

Performs the - operation. Read more
§

impl<'a> Sub<&'a Decimal> for Decimal

§

type Output = Decimal

The resulting type after applying the - operator.
§

fn sub(self, other: &Decimal) -> Decimal

Performs the - operation. Read more
§

impl<'a> Sub<Decimal> for &'a Decimal

§

type Output = Decimal

The resulting type after applying the - operator.
§

fn sub(self, other: Decimal) -> Decimal

Performs the - operation. Read more
§

impl Sub for Decimal

§

type Output = Decimal

The resulting type after applying the - operator.
§

fn sub(self, other: Decimal) -> Decimal

Performs the - operation. Read more
§

impl<'a> SubAssign<&'a Decimal> for &'a mut Decimal

§

fn sub_assign(&mut self, other: &'a Decimal)

Performs the -= operation. Read more
§

impl<'a> SubAssign<&'a Decimal> for Decimal

§

fn sub_assign(&mut self, other: &'a Decimal)

Performs the -= operation. Read more
§

impl<'a> SubAssign<Decimal> for &'a mut Decimal

§

fn sub_assign(&mut self, other: Decimal)

Performs the -= operation. Read more
§

impl SubAssign for Decimal

§

fn sub_assign(&mut self, other: Decimal)

Performs the -= operation. Read more
§

impl<'a> Sum<&'a Decimal> for Decimal

§

fn sum<I>(iter: I) -> Decimal
where I: Iterator<Item = &'a Decimal>,

Method which takes an iterator and generates Self from the elements by “summing up” the items.
§

impl Sum for Decimal

§

fn sum<I>(iter: I) -> Decimal
where I: Iterator<Item = Decimal>,

Method which takes an iterator and generates Self from the elements by “summing up” the items.
§

impl ToPrimitive for Decimal

§

fn to_i64(&self) -> Option<i64>

Converts the value of self to an i64. If the value cannot be represented by an i64, then None is returned.
§

fn to_i128(&self) -> Option<i128>

Converts the value of self to an i128. If the value cannot be represented by an i128 (i64 under the default implementation), then None is returned. Read more
§

fn to_u64(&self) -> Option<u64>

Converts the value of self to a u64. If the value cannot be represented by a u64, then None is returned.
§

fn to_u128(&self) -> Option<u128>

Converts the value of self to a u128. If the value cannot be represented by a u128 (u64 under the default implementation), then None is returned. Read more
§

fn to_f64(&self) -> Option<f64>

Converts the value of self to an f64. Overflows may map to positive or negative inifinity, otherwise None is returned if the value cannot be represented by an f64. Read more
source§

fn to_isize(&self) -> Option<isize>

Converts the value of self to an isize. If the value cannot be represented by an isize, then None is returned.
source§

fn to_i8(&self) -> Option<i8>

Converts the value of self to an i8. If the value cannot be represented by an i8, then None is returned.
source§

fn to_i16(&self) -> Option<i16>

Converts the value of self to an i16. If the value cannot be represented by an i16, then None is returned.
source§

fn to_i32(&self) -> Option<i32>

Converts the value of self to an i32. If the value cannot be represented by an i32, then None is returned.
source§

fn to_usize(&self) -> Option<usize>

Converts the value of self to a usize. If the value cannot be represented by a usize, then None is returned.
source§

fn to_u8(&self) -> Option<u8>

Converts the value of self to a u8. If the value cannot be represented by a u8, then None is returned.
source§

fn to_u16(&self) -> Option<u16>

Converts the value of self to a u16. If the value cannot be represented by a u16, then None is returned.
source§

fn to_u32(&self) -> Option<u32>

Converts the value of self to a u32. If the value cannot be represented by a u32, then None is returned.
source§

fn to_f32(&self) -> Option<f32>

Converts the value of self to an f32. Overflows may map to positive or negative inifinity, otherwise None is returned if the value cannot be represented by an f32.
§

impl TryFrom<&str> for Decimal

Try to convert a &str into a Decimal.

Can fail if the value is out of range for Decimal.

§

type Error = Error

The type returned in the event of a conversion error.
§

fn try_from(t: &str) -> Result<Decimal, Error>

Performs the conversion.
§

impl TryFrom<f32> for Decimal

Try to convert a f32 into a Decimal.

Can fail if the value is out of range for Decimal.

§

type Error = Error

The type returned in the event of a conversion error.
§

fn try_from(t: f32) -> Result<Decimal, Error>

Performs the conversion.
§

impl TryFrom<f64> for Decimal

Try to convert a f64 into a Decimal.

Can fail if the value is out of range for Decimal.

§

type Error = Error

The type returned in the event of a conversion error.
§

fn try_from(t: f64) -> Result<Decimal, Error>

Performs the conversion.
§

impl UpperExp for Decimal

§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
§

impl Zero for Decimal

§

fn zero() -> Decimal

Returns the additive identity element of Self, 0. Read more
§

fn is_zero(&self) -> bool

Returns true if self is equal to the additive identity.
source§

fn set_zero(&mut self)

Sets self to the additive identity element of Self, 0.
§

impl Copy for Decimal

§

impl Eq for Decimal

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> CloneToUninit for T
where T: Copy,

source§

unsafe fn clone_to_uninit(&self, dst: *mut T)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
source§

impl<T> CloneToUninit for T
where T: Clone,

source§

default unsafe fn clone_to_uninit(&self, dst: *mut T)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided [Span], returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> Same for T

§

type Output = T

Should always be Self
source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T> ToString for T
where T: Display + ?Sized,

source§

default fn to_string(&self) -> String

Converts the given value to a String. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a [WithDispatch] wrapper. Read more
source§

impl<T> DeserializeOwned for T
where T: for<'de> Deserialize<'de>,

source§

impl<T> NumAssign for T
where T: Num + NumAssignOps,

source§

impl<T, Rhs> NumAssignOps<Rhs> for T
where T: AddAssign<Rhs> + SubAssign<Rhs> + MulAssign<Rhs> + DivAssign<Rhs> + RemAssign<Rhs>,

source§

impl<T> NumAssignRef for T
where T: NumAssign + for<'r> NumAssignOps<&'r T>,

source§

impl<T, Rhs, Output> NumOps<Rhs, Output> for T
where T: Sub<Rhs, Output = Output> + Mul<Rhs, Output = Output> + Div<Rhs, Output = Output> + Add<Rhs, Output = Output> + Rem<Rhs, Output = Output>,

source§

impl<T> NumRef for T
where T: Num + for<'r> NumOps<&'r T>,

source§

impl<T, Base> RefNum<Base> for T
where T: NumOps<Base, Base> + for<'r> NumOps<&'r Base, Base>,